
3. daisy:224 (Zubrow, Dave)

4. daisy:225 (McCurley, James)

5. daisy:226 (Dekkers, Carol)

10. CMMI is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

Measures and Measurement for Secure Software
Development
Dave Zubrow, Software Engineering Institute [vita3]
James McCurley, Software Engineering Institute [vita4]
Carol Dekkers, Software Engineering Institute [vita5]

Copyright © 2005 Carnegie Mellon University

2005-09-28

This article discusses how measurement can be applied to software development processes and work
products to monitor and improve the security characteristics of the software being developed. It is aimed
at practitioners—designers, architects, requirements specialists, coders, testers, and managers—who
desire guidance as to the best way to approach measurement for secure development. It does not address
security measurements of system or network operations.

Overview

This practice area description discusses how measurement can be applied to software development
processes and work products to monitor and improve the security characteristics of the software being
developed. Measurement is highly dependent on aspects of the software development life cycle (SDLC),
including policies, processes, and procedures that reflect (or not) security concerns. This topic area is
aimed at practitioners—designers, architects, requirements specialists, coders, testers, and
managers—who desire guidance as to the best way to approach measurement for secure development. It
does not address security measurements of system or network operations.

Measurement and the Software Development Life Cycle

Measurement has long been recognized as a critical activity for successful system development. Good
measurement practices and data enable realistic project planning, timely monitoring of project progress
and status, identification of risks to the project, and effective process improvement. Measures and
indicators of software work products such as requirements, designs, and source code can be analyzed to
diagnose problems and identify solutions during project execution and enable the reduction of defects,
waste (effort, resources, etc.), and cycle time. These practices enable organizations to achieve higher
quality products and reflect mature processes, as delineated by the CMMI.10 Watchfire has published a
short description of typical application security activities for each level of the CMMI [Graf 05].
Unfortunately, measures for the development of securely coded products are in their infancy, and no
consensus exists as to what measures constitute best practices. A review of the existing technical
literature reveals the scarcity of any publicly reported, validated security measurements related to the
software development life cycle [see Measurement - Business Case]. Nonetheless, there are some
measures and practices used in software development that can be fruitfully extended to address security
concerns.

SLDC areas related to the definition and use of measures for secure development addressed in the Build

Measures and Measurement for Secure Software Development 1
ID: 227 | Version: 4 | Date: 13/04/06 16:05:18

daisy:224
daisy:225
daisy:226

18. Capability Maturity Model is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

Security In modules include: Requirements Analysis; Architectural Risk Analysis; Assembly,
Integration and Evolution; Code Analysis; Risk-Based and Functional Security Testing; Software
Development Life-Cycle Process; Coding Rules; Training & Awareness; and Project Management. Risk
management in general is addressed separately in the module Risk Analysis Framework on the Build
Security In website. In contrast to the traditional focus of risk management on project failure in software
development, it must now be extended to address the malicious exploitation of product flaws. Threat
modeling and its use in the SDLC is addressed in the modules Attack Patterns, Threat Modeling, and
Historical Risks. All of these areas impact or are impacted by the use of measurement.

Software Measures and Measures for Secure Development

This section covers the following three topics:

1. Software Engineering Measurement Process

2. Process Measures for Secure Development

3. Product Measures for Secure Development

Software Engineering Measurement Process
Recent work to establish a common perspective on how to perform software measurement and analysis
can be found in International Organization for Standardization and International Electrotechnical
Commission (ISO/IEC) 15939 (Software Measurement Process standard), the Capability Maturity
Model18 Integration (CMMI) Measurement and Analysis process area, and the guidance provided by the
Practical Software Measurement (PSM) project. For purposes of description, the practices from the
CMMI model are presented here. The practices are organized around two major goals or themes:
aligning measurement and analysis activities with organizational and project goals and then performing
the measurement and analysis activities. Briefly, the practices for aligning measurement are

• Establish Measurement Objectives

• Specify Measures

• Specify Data Collection and Storage Procedures

• Specify Analysis Procedures

The practices for performing measurement are

• Collect Measurement Data

• Analyze Measurement Data

• Store Data and Results

• Communicate Results

These practices, shown as steps in Table 1, are important in that they call for the organization and
project to plan their measurement activities so that the right measures are collected, analyzed, and
communicated to the appropriate people in an informative format and timely manner. Project
management and insight into product quality depend on data that is relevant, reliable, current, and valid.
Following these practices (or steps) focuses the measurement activities on the collection of data that will
be used, rather than simply collecting data for the sake of measurement. With respect to the development

Measures and Measurement for Secure Software Development 2
ID: 227 | Version: 4 | Date: 13/04/06 16:05:18

of secure software, it is important that security concerns be addressed in the steps of the measurement
process as outlined below.

Table 1. Measurement and Analysis Process

Step Number Step Name Input Techniques Critical
Participants

Output

1 Establish
Measurement
Objective

System
requirements

See
Requirements
Elicitation
practice area

Stakeholders,
requirements
team

Agreed-to
measurement
objectives (for
which the
attainment can
be measured)

2 Specify
Measures

Measurement
objectives,
software
development
life cycle
(SDLC)

Facilitated
work sessions

Measurement
analysts,
process
engineers,
security subject
matter experts,
users/customers

Measurement
definitions for
security; focus
on problem
prone modules;
known
vulnerabilities;
define needed
security levels

3 Specify Data
Collection and
Storage
Procedures

Measurement
definitions,
SDLC

Procedure
/process
mapping (and
potentially
design if a
current void)

Process
engineers,
designers,
practitioners

Process
changes,
training needs,
tool needs

4 Specify
Analysis
Procedures

Measurement
objectives and
definitions
(GQM)

Literature
review,
elicitation

Process
engineers,
measurement
analysts,
security experts

Identified
statistical
and/or
qualitative
analytical
techniques

5 Collect
Measurement
Data

Measurement
plan, data
collection tools
and
infrastructure,
instrumented
processes

Automated
tools and
manual forms
associated with
artifact
inspections and
testing

Practitioners,
testers,
measurement
analysts,
quality
assurance

Data in usable
form (e.g.,
database,
spreadsheet)

6 Analyze
Measurement
Data

Output of Step
5 (outputs from
Figure 1)

Specified in
Step 4

Measurement
analysts

Summary,
graphical
displays,
detailed results

7 Store Data and
Results

Outputs of
Steps 5 & 6

Inspection
database or test
results database

Measurement
analysts,
database
administrators

Retrievable
source data and
analytical
results

Measures and Measurement for Secure Software Development 3
ID: 227 | Version: 4 | Date: 13/04/06 16:05:18

8 Communicate
Results

Analyst
summary,
graphical report

Formatted
results with
interpretation
and
recommendations

Project
engineers,
project/line
management,
security experts

Feedback to
development
team, program
manager

Effective use of the above process relies first on the agreement of measurement objectives, which can be
applied to both product and the development process. These goals rely on explicit system
requirements—which mean that both functionality and security aspects must be specified early. The
organization should assess the risk environment to address probable threats and translate these concerns
into specific security requirements as well as design and implement a development process that will
satisfy the security requirements.

Following the specification of security related requirements, measurement objectives may be formulated
that will provide insight into the satisfaction of the security requirements. Examples of measurement
objectives include the following:

• What vulnerabilities have been detected in our products? Are our current development practices
adequate to prevent the recurrence of the vulnerabilities?

• What process points are most vulnerable to the introduction of security-related risks (e.g., injecting
reused code/modules into programs—where the variables could go unchecked, etc.)?

• What proportion of defects relate to security concerns and requirements? Do defect classification
schemes include security categories?

• To what extent do practitioners comply with security-related processes and procedures?

• To what extent are security concerns addressed in the intermediate workproducts (requirements,
design, etc.)? Have measures associated with security requirements and their implementation been
defined and planned?

• What are the critical and vulnerable modules? Have vulnerabilities been identified and addressed?

Threat modeling (See Threat Modeling module), or the attempt to identify likely types/sources of attack,
can also form a significant guiding requirement to the development processes. A recent thesis by Stuart
E. Schechter at Harvard’s Department of Computer Science attempts to utilize economic models for
valuing the discovery of vulnerabilities during development [Schechter 04]. His measurement of security
strength depends most on threat scenarios to assign values to vulnerabilities in an effort to extend a
market approach to the development process. Many risk and threat methodologies are available publicly,
and Microsoft has published extensive materials that delineate the company’s approach to analyzing and
mitigating threat risks during the SDLC [Microsoft 03, MSDN 04].

Process Measures for Secure Development
Security measurement objectives for the development process should address

• the existence of security policies applicable to the SDLC (roles, procedures, responsibilities.
management, coding rules, acceptance/release criteria, etc.)

• compliance to the above

• efficiency and effectiveness over time

It should be noted that the security measurement objectives for the development process are identical to
general measurement objectives—they are broken out here to stress the need to include security

Measures and Measurement for Secure Software Development 4
ID: 227 | Version: 4 | Date: 13/04/06 16:05:18

concerns in process implementation. Such measures could be implemented as part of an organization’s
quality assurance function. Although targeted for systems development and risk assessment as a whole,
useful guidance for measurement of this type can be found in the NIST publication Security Metrics
Guide for Information Technology Systems [Swanson 03].

Defect density is a commonly used measure of system quality. It is often computed as the number of
defects discovered during system test or during the first six months of operational use divided by the size
of the system. Estimates of defects remaining in the product (calculated by phase containment, defect
depletion, or capture-recapture techniques) form a natural analogue to estimate remaining security
vulnerabilities in the software. Phase containment of defects refers to an analytical technique that
measures the proportion of defects originating in a phase that are detected within that same phase. It
provides a good characterization of the ability of the development process to maintain quality throughout
the SDLC. The INFOSEC Assurance Capability Maturity Model (IA-CMM) recognizes the impact of
quality control by listing “Establishing Measurable Quality Goals” as one of two features that comprise
a level 4 rating of Quantitatively Controlled [NSA 04].

Product Measures for Secure Development
In the product context, security measurement objectives may take the form of

• security requirements, which are based on risks determined by threat assessments, privacy policies,
legal implications, etc. and can be specified as to extent and completeness

• architecture security, which addresses the specified security requirements

• secure design criteria, where security requirements can be traced

• secure coding practices, where integrity can be assessed and measured

Not all measures need to be complicated. For instance, in the requirement phase it is useful to know
whether security-related requirements have been considered for inclusion in the system requirements.
This could be measured initially as yes or no. As experience with the measure accrues over time, the
measure could evolve to characterize the extent to which security related requirements have been
included, perhaps against a standard. Security measurement objectives during the design and coding
phases will make use of tools and inspections/reviews. Much of the inspection measurements will be in
the form of traditional defect identification checklists, to which security-oriented items can be added.
Table 2 lists some sources of vulnerabilities or concerns that have been widely documented, along with a
reference to the part of ISO/IEC 9126 [ISO/IEC 03b, c] that has defined a relevant measure. Software
inspection checklists could be extended to include review of the issues in the table.

For instance, one could track the percentage of sources of input that have validation checks and
associated error handling. That is, checking each input source for length, format, type, etc. and then its
associated exit flows—either accepted then executed or as an error/exception and not executed. The
target for this measure would be 100%. Note that, while an improvement over no measurement for this
type of vulnerability, this simple measure does not address the potentially complex issue of determining
the effectiveness of an input validation technique as implemented and whether it should be counted in
the tally. This would require ongoing tracking of this measure’s performance to characterize the
effectiveness of the input validation techniques used.

Table 2. General Code Integrity Issues

• access control

• access controllability (ISO 9126-3)

• access auditability (ISO 9126-3)

Measures and Measurement for Secure Software Development 5
ID: 227 | Version: 4 | Date: 13/04/06 16:05:18

47. Many of these tools are addressed in the Tools category of Build Security In.

• input validation – particularly to address buffer overflows, format string attacks, SQL injection, etc.

• exception handling/error traps (log bad entries, no execute)

• resource management - consumption, retention, race conditions, closure, etc.

• privileges management – principle of least privilege

• system calls, process forks, etc.

• unexpected behavior or system response

• data security issues

• data security levels (proprietary, classified, personal, etc.)

• data encryption (ISO 9126-3)

• data corruption prevention (ISO 9126-3)

• garbage handling

• risk analysis (identified risks, ranked, with impact analysis, and mitigation and fallback plans)

• implementation flaws

Web Applications
• scripting issues

• sources of input

• forms, text boxes, dialog windows, etc.

• regular expression checks

• header integrity

• session handling

• cookies

• framework vulnerabities (java, .net, etc.)

• access control: front door, back door vulnerability assessment

• penetration attempts versus failures

• depth of successful penetrations before detection

Simple measures of enumeration and appropriate security handling for vulnerabilities would provide
insight into the security status of the system during development. In addition to the above table, a useful
list of “Measurable Security Entities” and “Measurable Concepts” has been published by Practical
Software and Systems Measurement [PSM 05].

In addition to inspection techniques, new tools exist for checking design and code for security
vulnerabilities and output measurements as results. Although many companies delineate the conceptual
basis for their tools, few offer specific guidance regarding the measurements employed.47 Two

Measures and Measurement for Secure Software Development 6
ID: 227 | Version: 4 | Date: 13/04/06 16:05:18

companies provide an exception with their use of new measurements not previously found in the
literature.

1. Microsoft’s Secure Windows Initiative uses a new measure—the Relative Attack Surface Quotient
(RASQ) as initially presented by Michael Howard [Howard 03]. This calculated number is put forth
as a cyclomatic complexity measure for security that yields a relative metric of a product’s
“attackability.” The measure is based on the identification of all the external exposures in the product
code, with the goal of reducing the product’s attack profile. It is of limited use, since the measures
are meaningful only for like products, but an independent evaluation did confirm the measure’s
effectiveness [Ernst & Young 03]. Manadhata and Wing from Carnegie Mellon’s Computer Science
Department also successfully applied the measurement to Linux [Manadhata 04].

2. Ounce Labs’ Prexis performs contextual analysis of code for vulnerability identification, much like
many other static analysis products. Prexis differs by computing a V-density measure to relate the
number and criticality of vulnerabilities in the code for project decision-making. As an integrated
software risk management and vulnerability assessment product, Prexis includes (1) Prexis/Engine:
Source Code Vulnerability Scanning and Knowledgebase Core, (2) Management Risk Dashboard,
and (3) Developer Remediation Workbench for the product development life cycle [Ounce Labs 05].

Tools
See the above discussion and the BSI modules Black Box Testing Tools, Code Analysis Tools, and
Modeling Tools. Note that spreadsheet programs, statistical packages, and database programs can be
very helpful for some measurement and analysis purposes. Some vendors also offer tools that harvest
data from other databases and repositories to produce a variety of measurement reports.

Various development tools now include static and dynamic capabilities for analyses of security
characteristics within the code. Many of these tools continue to perform as black box tests, where the
code is built and then submitted to the tool and results are produced as output. White box testing tools
have recently become available, which integrate into the development environment, offering interactive
feedback and remediation to the developer during the coding process.

Maturity of Practice

Software measurement is becoming a somewhat mature field, as evidenced by professional and
international standards, specialized conferences, and several decades of literature and research. In spite
of this history, the practice of software measurement is still highly variable among software
development organizations, with many doing little to measure their projects and products during
development. Very few organizations employ any form of measurement to assess the security
characteristics of their products in a quantitative manner during development. Indeed, few even address
security concerns in any manner. Very little exists in the published literature concerning the use of
software measurement with respect to characterizing security concerns during software development.

Security-Specific Bibliography

Anderson, Ross J. Security Engineering: A Guide to Building Dependable Distributed Systems. New
York, NY: Wiley, 2001 (ISBN 0471389226).

Application Security, Inc. Database Security: A Key Component of Application Security. New York,
NY: Application Security, Inc., 2004. http://www.appsecinc.com.

Biszick-Lockwood, Bar. IEEE P1074 - Standard for Developing Project Life Cycle Processes.
QualityIT, July 2005.
http://www.qualityit.net/Resources/WhitePapers/IEEEP1074-2005-RoadmapForOptimizingSecurityInTheSystemAndSoftwareLifeCycle.pdf.

Measures and Measurement for Secure Software Development 7
ID: 227 | Version: 4 | Date: 13/04/06 16:05:18

Brown, Keith. The .NET Developer's Guide to Windows Security. Boston, MA: Addison Wesley
Professional, Microsoft .NET Development Series, 2004 (ISBN 0321228359).

Cannon, J. C. Privacy: What Developers and IT Professionals Should Know. Boston, MA:
Addison-Wesley Professional, 2004 (ISBN 0321224094).

Corporate Information Security Working Group. Report of the Best Practices and Metrics Teams.
Subcommittee on Technology and Information Policy, Intergovernmental Relations and the Census,
Government Reform Committee, U.S. House of Representatives (Rev. Jan. 10, 2005).

DISAnet. DoD Information Technology Security Certification & Accreditation Process. Dec. 20, 2000.
http://iase.disa.mil/ditscap/ditsprimer.ppt.

Woody, Carol; Hall, Anthony; & Clark, John. Can Secure Systems be Built Using Today’s Development
Processes? Panel presentation at the European SEPG in London, England, June 17, 2004.
http://www.cert.org/archive/pdf/eursepg04.pdf.

Foundstone. Hacme Bank™ v1.0, released 9/8/2004 by Foundstone, Inc. http://www.foundstone.com.

Foundstone. Validator.NET™, released 3/08/2005 by Foundstone, Inc. http://www.foundstone.com.

Geer, Dan; Soohoo, K.; & Jaquith, A. “Information Security: Why the Future Belongs to the Quants.”
IEEE Security and Privacy Magazine 1, 4 (July-August 2003): 24-32.

Germanow, Abner; Wysopal, Chris; Geer, Dan; & Darby, Chris. The Injustice of Insecure Software,
@stake Security Briefing, February 2002.
http://www.atstake.com/research/reports/acrobat/atstake_injustice.pdf.

Gilliam, D.; Kelly, J.; Powell, J.; & Bishop, M. “Development of a Software Security Assessment
Instrument to Reduce Software Security Risk,” 144-149. Proceedings of the 10th IEEE International
Workshop on Enabling Technologies: Infrastructure for Collaborative Enterprises. Cambridge, MA,
June 20-22, 2001. Los Alamitos, CA: IEEE Computer Society, 2001.

Graf, Kenneth. Addressing Challenges in Application Security, A WatchFire whitepaper, 2005.
http://www.watchfire.com/resources/Addressing-Challenges-in-App-Security.pdf (2005).

Graff, Mark G. & Van Wyk, Kenneth R. Secure Coding: Principles and Practices. Cambridge, MA:
O'Reilly, 2003 (ISBN 0596002424).

Grance, Tim; Hash, Joan; & Stevens, Marc. Security Considerations in the Information System
Development Life Cycle; Recommendations of the National Institute of Standards and Technology, NIST
SPECIAL PUBLICATION 800-64 REV. 1,Computer Security Division, Information Technology
Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, (June 2004), U.S.
Department of Commerce, Technology Administration, National Institute of Standards and
Technology,http://csrc.nist.gov/publications/nistpubs/800-64/NIST-SP800-64.pdf (2004).

Hoglund, Greg & McGraw, Gary. Exploiting Software: How to Break Code. Boston, MA:
Addison-Wesley, 2004 (ISBN 0201786958).

Howard, Michael. Fending Off Future Attacks by Reducing Attack Surface.
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dncode/html/secure02132003.asp
(2003).

Howard, Michael & LeBlanc, David C. Writing Secure Code, 2nd ed. Redmond, WA: Microsoft Press,
2002 (ISBN 0735617228).

National Security Agency. INFOSEC Assurance Capability Maturity Model (IA-CMM), Version 3.1,
Infosec Assurance Training and Rating Program.

Measures and Measurement for Secure Software Development 8
ID: 227 | Version: 4 | Date: 13/04/06 16:05:18

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dncode/html/secure02132003.asp

69. http://www.iatrp.com/IA-CMMv3_1-%2520FINAL-NOV04.doc

http://www.iatrp.com/IA-CMMv3_1-%20FINAL-NOV04.doc69 (2004).

Institute for Security and Open Methodologies (ISECOM). SPSMM - The Secure Programming
Standards Methodology Manual. http://isecom.securenetltd.com/spsmm.0.5.1.en.pdf (2001).

Jaquith, Andrew. The Security of Applications: Not All Are Created Equal, @atstake Security Research
Report. http://www.atstake.com/research/reports/acrobat/atstake_app_unequal.pdf (2002).

Kimbell, John & Walrath Marjorie. “Life Cycle Security and DITSCAP” IA Newsletter, vol. 4, no. 2,
Spring 01, http://iase.disa.mil/ditscap/ditsarticle.pdf (2001).

Koziol, Jack; Litchfield, D.; Aitel, D.; Anley, C.; Eren, S.; Mehta, N.; & Riley. H. The Shellcoder's
Handbook: Discovering and Exploiting Security Holes. Indianapolis, IN: Wiley Pub, 2004 (ISBN
0764544683).

Letteer, Ray A. Information Operations and the DAA (Designated Approving Authority), DISA/IPMO
D253 [SAIC]. http://iase.disa.mil/ditscap/daav3.ppt (2001).

Levine, Matthew. The Importance of Application Security. @atstake Security Briefing, January 2003.
http://www.atstake.com/research/reports/acrobat/atstake_application_security.pdf (2003).

Manadhata, Pratyusa & Wing, Jeannette M. Measuring a System’s Attack Surface CMU-CS-04-102.
Pittsburgh, PA: School of Computer Science, Carnegie Mellon University, January 2004.

Mead, Nancy R. International Liability Issues for Software Quality (CMU/SEI-2003-SR-001,
ADA416434). Pittsburgh, PA: CERT Research Center, Software Engineering Institute, Carnegie Mellon
University, July 2003.

Microsoft TechNet. Threats and Countermeasures Guide.
http:microsoft.com/technet/security/topics/Serversecurity/tcg/tcgch00.mspx (2003).

Microsoft Developer Network (MSDN). Threat Modeling: Patterns and Practices.
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/secmod/html/secmod76.asp?frame=true&hidetoc=true
(2004).

National Institute of Standards and Technology. Revised NIST SP 800-26 (Security Self-Assessment
Guide for Information Technology Systems, November 2001) System Questionnaire with NIST SP800-53
(Recommended Security Controls for Federal Information Systems, February 2005 (Including updates
through 04-22-2005)) References and Associated Security Control Mappings.
http://csrc.nist.gov/publications/nistpubs/800-26/Mapping-of-800-53v1.doc (2005).

National Institute of Standards and Technology. Information Security in the System Development Life
Cycle (SDLC) Brochure. http://csrc.nist.gov/SDLCinfosec/SDLC_brochure_Aug04.pdf (2004).

Ounce Labs. Product Overview. http://www.ouncelabs.com/overview.html (2005).

OWASP. A Guide to Building Secure Web Applications and Web Services, 2.0 Black Hat Edition. The
Open Web Application Security Project (OWASP).
http://easynews.dl.sourceforge.net/sourceforge/owasp/OWASPGuide2.0.1.pdf (2005).

Peikari, Cyrus & Chuvakin, Anton. Security Warrior. Sebastopol, CA :O'Reilly & Associates, Inc, 2004
(ISBN 0596005458).

President’s Information Technology Advisory Committee (PITAC), Cyber Security: A Crisis of
Prioritization, National Coordination Office for Information Technology Research and Development,
Arlington, VA. http://www.nitrd.gov/pitac/reports/20050301_cybersecurity/cybersecurity.pdf (2005).

Measures and Measurement for Secure Software Development 9
ID: 227 | Version: 4 | Date: 13/04/06 16:05:18

http://www.iatrp.com/IA-CMMv3_1-%2520FINAL-NOV04.doc
http://iase.disa.mil/ditscap/daav3.ppt
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/secmod/html/secmod76.asp?frame=true&hidetoc=true
http://csrc.nist.gov/publications/nistpubs/800-26/Mapping-of-800-53v1.doc
http://www.ouncelabs.com/overview.html

81. http://www.psmsc.com/Downloads/Other/Security%2520White%2520Paper%25202.0.pdf

84. http://www.eecs.harvard.edu/%7Estuart/papers/thesis.pdf

Practical Software and Systems Measurement (PSM). Security Measurement, White Paper v2.0,
http://www.psmsc.com/Downloads/Other/Security%20White%20Paper%202.0.pdf81 (2005).

Ross, Ron; Swanson, Marianne; Stoneburner, Gary; Katzke, Stu; & Johnson, Arnold. Guide for the
Security Certification and Accreditation of Federal Information Systems, NIST Special Publication
800-37, Computer Security Division, Information Technology Laboratory, National Institute of
Standards and Technology, Gaithersburg, MD. U.S. Department of Commerce, Technology
Administration, National Institute of Standards and Technology
http://csrc.nist.gov/publications/nistpubs/800-37/SP800-37-final.pdf (2004).

Sademies, Anni. Process Approach to Information Security Metrics in Finnish Industry and State
Institutions, VTT Electronics, Oulu, Finland, http://www.vtt.fi/inf/pdf/publications/2004/P544.pdf
(2004).

Schechter, Stuart Edward. Computer Security Strength & Risk: A Quantitative Approach, Doctoral
Thesis, Computer Science, Harvard University, Cambridge, Massachusetts, May 2004.
http://www.eecs.harvard.edu/~stuart/papers/thesis.pdf84 (2004).

Seacord, Robert C. Secure Coding in C and C++. Boston, MA: Addison-Wesley, 2005 (ISBN
0321335724).

SecureSoftware, Inc. A Special Report for managers: Why Application Security Is the New Business
Imperative – and How to Achieve It., Secure Software, Inc., McLean VA.
http://modeldrivenengineering.org/pub/Sandbox/ProcessesForSecurity/appsec.pdf (2004).

Soo Hoo, Kevin; Jaquith, Andrew; & Geer, Dan. The Security of Applications, Reloaded, @atstake
Security Briefing, July, 2003. http://www.atstake.com/research/reports/acrobat/atstake_app_reloaded.pdf
(2003).

Stoneburner, Gary; Hayden, Clark; & Feringa, Alexis. Engineering Principles for Information
Technology Security (A Baseline for Achieving Security), Revision A, NIST Special Publication 800-27
Rev A, Computer Security Division, Information Technology Laboratory, National Institute of
Standards and Technology, Gaithersburg, MD, and Booz-Allen and Hamilton U.S. Department of
Commerce, Technology Administration, National Institute of Standards and Technology.
http://csrc.nist.gov/publications/nistpubs/800-27A/SP800-27-RevA.pdf (2004).

Swanson, Marianne; Wohl, Amy; Pope, Lucinda; Grance, Tim; Hash, Joan; & Thomas, Ray.
Contingency Planning Guide for Information Technology Systems; Recommendations of the National
Institute of Standards and Technology, NIST Special Publication 800-34. U.S. Department of
Commerce, Technology Administration, National Institute of Standards and Technology.
http://csrc.nist.gov/publications/nistpubs/800-34/sp800-34.pdf (2002).

Swanson, Marianne; Bartol, Nadya; Sabato, John; Hash, Joan; & Graffo, Laurie. Security Metrics Guide
for Information Technology Systems, NIST Special Publication 800-55, Computer Security Division,
Information Technology Laboratory, National Institute of Standards and Technology, Gaithersburg, MD,
U.S. Department of Commerce, Technology Administration, National Institute of Standards and
Technology. http://csrc.nist.gov/publications/nistpubs/800-55/sp800-55.pdf (2003).

Trocino, Douglas P. Developing Secure Applications: Best Practices for Writing Secure Code. Boca
Raton, Fla.: Auerbach , 2004 (ISBN 0849319900).

Viega, John & McGraw, Gary. Building Secure Software: How to Avoid Security Problems the Right
Way. Boston, MA: Addison-Wesley, 2002 (ISBN 020172152X).

Measures and Measurement for Secure Software Development 10
ID: 227 | Version: 4 | Date: 13/04/06 16:05:18

Viega, John & Messier, Matt. Secure Programming Cookbook for C and C++. Sebastopol, CA :
O'Reilly, 2003 (ISBN 0596003943).

Wheeler, David A., Secure Programming for Linux and UNIX HOWTO, v3.010, (March 3, 2003).
http://www.ibiblio.org/pub/Linux/docs/HOWTO/other-formats/pdf/Secure-Programs-HOWTO.pdf
(2003).

Whittaker, James A. & Thompson, Herbert H. How to Break Software Security: Effective Techniques for
Security Testing. Boston: Pearson/Addison Wesley, 2004 (ISBN 0321194330).

IBM Developer Works Series:

Wheeler, David A. Secure programmer: Call components safely.
http://www-106.ibm.com/developerworks/linux/library/l-calls.html (December 16, 2004).

Wheeler, David A. Secure programmer: Prevent race conditions.
http://www-106.ibm.com/developerworks/linux/library/l-sprace.html (October 7, 2004).

Wheeler, David A. Secure programmer: Minimizing privileges.
http://www-106.ibm.com/developerworks/linux/library/l-sppriv.html (May 20, 2004).

Wheeler, David A. Secure programmer: Countering buffer overflows
http://www-106.ibm.com/developerworks/linux/library/l-sp4.html (January 27, 2004).

Wheeler, David A. Secure programmer: Keep an eye on inputs
http://www-106.ibm.com/developerworks/linux/library/l-sp3.html (December 19, 2003).

Wheeler, David A. Secure programmer: Validating input
http://www-106.ibm.com/developerworks/linux/library/l-sp2.html (October 23, 2003).

Wheeler, David A. Secure programmer: Developing secure programs
http://www-106.ibm.com/developerworks/linux/library/l-sp1.html (August 21, 2003).

Software Engineering Bibliography

Beizer, Boris. Software Testing Techniques, 2nd edition, Boston, MA.: International Thomson Computer
Press, 1990 (ISBN 1850328803).

Chrissis, M. B.; Konrad, M.; & Shrum, S. CMMI: Guidelines for Process Integration and Product
Improvement. Boston, MA: Addison-Wesley, 2003 (ISBN 0321154967).

C?T?, Marc-Alexis; Suryn, Witold; Martin, Robert A.; & Laporte, Claude Y. "Evolving a Corporate
Software Quality Assessment Exercise: A Migration Path to ISO/IEC 9126.” Software Quality
Engineering 6, 3. http://www.asq.org/pub/sqp/past/vol6_issue3/SQPv6i3cote.pdf (2004).

Ernst & Young LLP. Using Attack Surface Area And Relative Attack Surface Quotient To Identify
Attackability, Security & Technology Solutions, Advanced Security Center. Customer Information
Paper, 2003. http://www.microsoft.com/windowsserver2003/docs/AdvSec.pdf (2003).

Fenton, Norman E. & Pfleeger, Sharon L. Software Metrics: A Rigorous and Practical Approach, 2nd
ed. Boston, MA: International Thomson Computer Press, 1996 (ISBN 1850322759).

Grady, Robert B. Practical Software Metrics for Project Management and Process Improvement.
Englewood Cliffs, NJ : Prentice Hall, 1992 (ISBN 0137203845).

Halstead, Maurice.H. Elements of Software Science. New York, NY: Elsevier, 1977 (ISBN
0444002057).

Measures and Measurement for Secure Software Development 11
ID: 227 | Version: 4 | Date: 13/04/06 16:05:18

http://www-106.ibm.com/developerworks/linux/library/l-calls.html
http://www-106.ibm.com/developerworks/linux/library/l-sprace.html
http://www-106.ibm.com/developerworks/linux/library/l-sppriv.html
http://www-106.ibm.com/developerworks/linux/library/l-sp4.html
http://www-106.ibm.com/developerworks/linux/library/l-sp3.html
http://www-106.ibm.com/developerworks/linux/library/l-sp2.html
http://www-106.ibm.com/developerworks/linux/library/l-sp1.html

Humphrey, Watts S. Managing the Software Process. Reading, MA: Addison-Wesley, 1989 (ISBN
0201180952).

Humphrey, Watts S. A Discipline for Software Engineering. Reading, MA: Addison-Wesley, 1995
(ISBN 0201546108).

Humphrey, Watts S. Introduction to the Team Software Process. Reading, MA: Addison-Wesley, 2000
(ISBN 020147719X).

ISO. ISO/IEC 15939:2002, Software engineering – Software Measurement Process. Geneva,
Switzerland: International Organization for Standardization, 2002.

ISO. ISO/IEC 9126-1:2001: Software Engineering – Product Quality. Part 1: Quality Model. Geneva,
Switzerland: International Organization for Standardization, 2001.

ISO. ISO/IEC 9126-2:2003: Software Engineering – Product Quality. Part 2: External Metrics. Geneva,
Switzerland: International Organization for Standardization, 2003.

ISO. ISO/IEC 9126-2:2003: Software Engineering – Product Quality. Part 3: Internal Metrics. Geneva,
Switzerland: International Organization for Standardization, 2003.

ISO. ISO/IEC 9126-2:2004: Software Engineering – Product Quality. Part 2: Quality in Use Metrics.
Geneva, Switzerland: International Organization for Standardization, 2004.

Kan, Stephen H. Metrics and Models in Software Quality Engineering, 2nd ed. Boston, MA:
Addison-Wesley, 2003 (ISBN 0201729156).

McGarry, John; Card, David; Jones, Cheryl; Layman, Beth; Clark, Elizabeth; Dean, Joseph; & Hall,
Fred. Practice Software Measurement: Objective Information for Decision Makers, Boston, MA:
Addison-Wesley, 2002 (ISBN 0201715163).

Reports and Articles

Basili, Victor R. “Quantitative Software Complexity Models: A Panel Summary.” IEEE Proceedings of
the Workshop on Quantitative Software Models for Reliability, Complexity, and Cost. October 1979.
http://www.cs.umd.edu/projects/SoftEng/ESEG/papers/83.14.pdf (1979).

Basili, Victor R. & Weiss, David M. “A Methodology for Collecting Valid Software Engineering Data.”
IEEE Transactions on Software Engineering 10, 6 (November 1984): 728-738.

Fagan, Michael E. “Design and code inspections to reduce errors in program development.” IBM
Systems Journal 38, 2 & 3 (1999): 258-287.

Florac, W. Software Quality Measurement: A Framework for Counting Problems and Defects
(CMU/SEI-92-TR-022, ADA258556). Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon
University, 1992. http://www.sei.cmu.edu/publications/documents/92.reports/92.tr.022.html.

Fenton, Norman. E. & Ohlsson, Niclas. “Quantitative Analysis of Faults and Failures in a Complex
Software System.” IEEE Transactions on Software Engineering 26, 8 (August 2000): 797-814.

McCabe, T. “A Complexity Measure.” IEEE Transactions on Software Engineering 2, 4 (December
1976): 308-320.

McGraw, Gary. “Software Security.” IEEE Security and Privacy 2, 2 (March-April 2004): 80-83.

Web Articles/Artifacts/Tools

Foundstone, Inc. Hacme Bank™ v1.0 (released 9/8/2004).
http://www.foundstone.com/index.htm?subnav=resources/navigation.htm&subcontent=/resources/proddesc/hacmebank.htm

Measures and Measurement for Secure Software Development 12
ID: 227 | Version: 4 | Date: 13/04/06 16:05:18

http://www.foundstone.com/index.htm?subnav=resources/navigation.htm&subcontent=/resources/proddesc/hacmebank.htm

(2004).

Practical Software and Systems Measurement. http://www.psmsc.com (2005).

Software Engineering Information Repository. http://seir.sei.cmu.edu (2005).

Capture/Recapture Analysis

Briand, Lionel C.; Emam, Khaled El; Freimut, Bernd G.; & Laitenberger, Oliver. “A Comprehensive
Evaluation of Capture-Recapture Models for Estimating Software Defect Content.” IEEE Transactions
on Software Engineering 26, 6 (June 2000): 518-540.

Humphrey, Watts S. Introduction to the Team Software Process. Reading, MA: Addison Wesley, 1999
(ISBN 020147719X).

Petersson, Hakan & Wohlin, Claes. “An Empirical Study of Experience-Based Software Defect Content
Estimation Methods,” 126-135. Proceedings of the International Symposium on Software Reliability
Engineering, ISSRE. Boca Raton, FL, Nov. 1-4, 1999. Los Alamitos, CA: IEEE Computer Society,
1999.

Defect Prevention Program

Mays, R. G.; Jones, C. L.; Holloway, G. J.; & Studinski, D. P. “Experiences with Defect Prevention.”
IBM Systems Journal 29, 1 (1990): 4-32.

Grady, R. B. “Software Failure Analysis for High-Return Process Improvement Decisions.” Hewlett
Packard Journal 47, 4 (August 1996): 15-24.

Gale, J. L.; Tirso, J. R.; & Burchfield, C. A. “Implement the Defect Prevention Process in the MVS
Interactive Programming Organization.” IBM Systems Journal 29, 1 (1990): 33-43.

Statistical Process Control

Florac, William. A. & Carleton, Anita D. Measuring the Software Process: Statistical Process Control
for Software Process Improvement. Reading, MA: Addison Wesley, 1999 (ISBN 0201604442).

Orthogonal Defect Classification Defect Prediction Technique

Chillarege, Ram; Bhandari, Inderpal S.; Chaar, Jarir K.;Halliday, Michael J.; Moebus, Diane S.; Ray,
Bonnie K.; & Wong, Man-Yuen. “Orthogonal Defect Classification - A Concept for In-Process
Measurements.” IEEE Transactions on Software Engineering 18, 11 (Nov. 1992): 943-956.

Bridge, Norman & Miller, Corrine. “Orthogonal Defect Classification: Using Defect Data to Improve
Software Development,” 197-213. International Conference on Software Quality. Montgomery, AL,
October 6-8, 1997. Milwaukee, WI: American Society for Quality, 1997.

El Emam, K. & Wieczorek, I. “The Repeatability of Code Defect Classifications,” 322-333. Proceedings
of the Ninth International Symposium onSoftware Reliability Engineering. Paderborn, Germany, Nov.
4-7, 1998. Los Alamitos, CA: IEEE Computer Society, 1998.

Fault Proneness

Selby, R. & Basili, V. “Analyzing Error-Prone System Structure.” IEEE Transactions on Software
Engineering 17, 2 (Feb. 1991): 141-152.

Briand, Lionel C.; Melo, Walcelio L.; & Wust, Jurgen. “Assessing the Applicability of Fault-Proneness
Models Across Object-Oriented Software Projects.” IEEE Transactions on Software Engineering 28, 7
(July 2002): 706-720.

Measures and Measurement for Secure Software Development 13
ID: 227 | Version: 4 | Date: 13/04/06 16:05:18

http://www.psmsc.com
http://seir.sei.cmu.edu

109. http://sunset.usc.edu/publications/TECHRPTS/1999/usccse99-510/usccse99-510.pd

El Emam, K. “A Primer on Object Oriented Measurement,” 185-187. 7th International Software Metrics
Symposium. London, England, April 4-6, 2001. Los Alamitos, CA: IEEE Computer Society, 2001.

Fenton, Norman E. & Ohlsson, Niclas. “Quantitative Analysis of Faults and Failures in a Complex
Software System.” IEEE Transactions on Software Engineering 26, 8 (August 2000): 797-814.

Ohlsson, Magnus C. & Wohlin, Claes. “Identification of Green, Yellow, and Red Legacy Components,”
6-15. Proceedings of the 1998 IEEE International Conference on Software Maintenance, ICSM.
Bethesda, MD, Nov. 16-20, 1998. Los Alamitos, CA: IEEE Computer Society, 1998.

General Defect Detection References

Fenton, Norman E. & Neil, Martin. “A Critique of Software Defect Prediction Models.” IEEE
Transactions on Software Engineering 25, 5 (Sept. 1999): 675-689.

Frederick, M. “Using Defect Tracking and Analysis to Improve Software Quality.” University of
Maryland. http://www.dacs.dtic.mil/techs/defect/defect.pdf (1999).

Florac, W. A. Software Quality Measurement: A Framework for CountingProblems and Defects
(CMU/SEI-92-TR-22, ADA258556). Pittsburgh PA: Software Engineering Institute, Carnegie Mellon
University, September 1992.

Peng, Wendy W. & Wallace, Dolores R. Software Error Analysis. Gaithersburg, MD: U.S. Dept. of
Commerce, National Institute of Standards and Technology, 1993.

Empirical Defect Prediction

Humphrey, W. Introduction to the Team Software Process. Reading, MA: Addison Wesley, 2000 (ISBN
020147719X).

Weller, E. F. “Using metrics to manage software projects.” IEEE Software 27, 9 (Sept. 1994): 27-33.

Defect Profile Prediction Technique

Gaffney, John; Roberts, William; & DiLorio, Robert. “A Process and Tool for Improved Software
Defect Analysis and Quality Management,” Track 7, 463-469. CD-ROM Proceedings for the Ninth
Annual Software Technology Conference: Information Dominance Through Software Technology. Salt
Lake City, Utah, April 27 – May 2, 1997. Hill AFB, UT: Software Technology Support Center (STSC),
1997.

COQUALMO Prediction Technique

Chulani, Sunita & Boehm, Barry. Modeling Software Defect Introduction and Removal: COQUALMO
(Technical Report USC-CSE-99-510). Los Angeles, CA: University of Southern California, Center for
Software Engineering, 1999.
http://sunset.usc.edu/publications/TECHRPTS/1999/usccse99-510/usccse99-510.pdf109 (1999).

SEI Copyright
Carnegie Mellon University SEI-authored documents are sponsored by the U.S. Department of Defense
under Contract FA8721-05-C-0003. Carnegie Mellon University retains copyrights in all material
produced under this contract. The U.S. Government retains a non-exclusive, royalty-free license to
publish or reproduce these documents, or allow others to do so, for U.S. Government purposes only
pursuant to the copyright license under the contract clause at 252.227-7013.

Measures and Measurement for Secure Software Development 14
ID: 227 | Version: 4 | Date: 13/04/06 16:05:18

http://sunset.usc.edu/publications/TECHRPTS/1999/usccse99-510/usccse99-510.pd

1. http://www.sei.cmu.edu/about/legal-permissions.html

Permission to reproduce this document and to prepare derivative works from this document for internal
use is granted, provided the copyright and “No Warranty” statements are included with all reproductions
and derivative works.

For inquiries regarding reproducing this document or preparing derivative works of this document for
external and commercial use, including information about “Fair Use,” see the Permissions1 page on the
SEI web site. If you do not find the copyright information you need on this web site, please consult your
legal counsel for advice.

Fields

Name Value

Copyright Holder SEI

Fields

Name Value

is-content-area-overview true

Content Areas Best Practices/Measurement

SDLC Relevance Implementation
Maintenance

Workflow State Publishable

Measures and Measurement for Secure Software Development 15
ID: 227 | Version: 4 | Date: 13/04/06 16:05:18

http://www.sei.cmu.edu/about/legal-permissions.html

